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1. Introduction
Basic motivation

• Conventional empirical production analysis maintains convexity (C): Implicit 
or explicit assumption that non-convexities (NC) do not impact results.

• Some reasons for NC in technology:
1. Indivisibilities
2. Economies of scale 
3. Economies of specialization (e.g., nonrival inputs in new growth theory) 
4. Externalities 
These reasons can be ignored because of the assumption of time divisibility.

• Theoretical results pointing to impact of C:
1. Jacobsen (1970), Shephard (1970, 1974): cost function is non-decreasing and 

C (NC) in outputs when technology is C (NC).
2. Briec et al. (2004): cost function on C technology ≤ cost function on NC 

technology.

• C can then only be maintained if there is well-established empirical 
evidence that its impact on most or some specific applications is negligible.
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1. Introduction
Empirical evidence revealing impact of convexity (1)

Traditional analysis:

• Production: NC in electricity generation due to minimum up and down time 
constraints, multi-fuel effects, etc. lead to NC and non-differentiable variable 
costs (Bjørndal & Jörnsten (2008), Park et al. (2010)).

• Cost: Costs in car manufacturing are NC due to changes in the number of shifts 
and in the shutting down of plants for some time (e.g., Copeland & Hall 
(2011)). 

Frontier analysis:

• Production: For oil field petroleum data, Kerstens & Managi (2012) report 
substantial differences in Luenberger productivity indicator between C (DEA) 
and NC (FDH) technologies: find both beta- and sigma-convergence for NC case.

• Cost: Cummins & Zi (1998) and Grifell-Tatjé & Kerstens (2008) offer cost 
frontier estimates and cost efficiency ratios for USA life insurance and Spanish 
electricity distribution: C and NC results are different.
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1. Introduction
Empirical evidence revealing impact of convexity (2)

Frontier analysis (cont.):

Wheelock & Wilson (2009): 5 inputs & 5 outputs; 11993, 9585 & 6075 banks for 
1985, 1994 & 2004.
All observations in each year are on the NC-frontier. Only 7.9 to 8.8 % are on C 
frontier. Thus, all inefficiency is solely due to the C assumption.

Engineering production function literature:

Many operations management problems in industry and distribution involve 
indivisibilities and require integer optimisation. The aggregation of such 
processes within an organisation is unlikely to result in a C technology.

Similar to arguments of engineering production function literature: most 
production processes yield neo-classical technologies only under strict 
conditions (see Wibe (1984)).

Conclusion: 
Despite this limited amount of evidence, the assumption of C in our view 
ideally requires testing.
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1. Introduction
2 goals & Use of non-parametric convex and non-convex cost functions

We explore differences in:
• Cost frontier estimates based on C and NC cost functions (incl. illustrations 

with sections relating costs to outputs for specific units).
• Characterization of economies of scale and returns to scale for C and NC 

cost functions and technologies. 

Use of non-parametric C and NC cost functions: 
• There are hardly alternative semi-parametric or parametric specifications 

that allow for testing C. 
• This non-parametric approach coincides with the non-parametric nature of 

the axioms under scrutiny. 

Fuss, McFadden and Mundlak (1978: 223):
“Given the qualitative, non-parametric nature of the fundamental axioms, 

this suggests … that the more relevant tests will be non-parametric, rather 

than based on parametric functional forms, even very general ones.”
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• Efficiency is measured using : - deterministic, 
- nonparametric technologies. 

• Production technologies are based on K observations using a vector of inputs x to 
produce a vector of outputs y. 

• Technology is represented by its production possibility set :
T = {(x,y): x can produce y}. 

• Input set L(y) denotes all input vectors x producing the output vector y:

L(y) = {x: (x,y) ∈ T}. 

• A convenient characterisation of technology is the input distance function: 

• Radial input efficiency measure (DFi(x,y)) is the inverse of the input distance 
function.

2. Technology and Cost Functions 
Basic definitions

( ) { }.)(/,0:max, yLxyxDi ∈≥= λλλ
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• Cost function:
C(y,w) = min {wx  x ∈ L(y)}.

• Duality relations link primal and dual formulations of technology: it allows a well-
behaved technology to be reconstructed from the observations on cost minimizing 
producer behavior, and the reverse.

• Duality between input distance function and cost function:

• Traditional duality relation is established under the convexity hypothesis. 

• Briec et al (2004) establish a local duality result between NC technologies obeying 
different scaling laws and corresponding NC cost functions.

2. Technology and Cost Functions 
Cost function & duality
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2. Technology and Cost Functions 
Non-parametric convex and non-convex specifications of technology 
and cost functions

Unified algebraic representation of C and NC technologies under different 
returns to scale assumptions (Briec et al (2004)):
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2. Technology and Cost Functions 
Non-Parametric Convex and Non-Convex Specifications of Technology 
and Cost Functions (2)

Note:

(i) activity vector (z) operates subject to a NC or C constraint, 
(ii) scaling parameter (δ ) allows for a particular scaling of observations spanning 

the frontier: 
- δ free under constant returns to scale (CRS), 

- δ = 1 under variable returns to scale (VRS), 
- δ ≤ 1 under non-increasing returns to scale (NIRS) 
- δ ≥ 1 non-decreasing returns to scale (NDRS).

Computational Issues:

Computing radial input efficiency :
• relative to C technologies: NLP, or LP.
• relative to NC technologies: NLMIP, MIP, LP, or implicit enumeration.

Computing cost function: 
• relative to C technologies: LP
• relative to NC technologies: LP, or implicit enumeration.
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2. Technology and Cost Functions 
Non-Parametric Convex and Non-Convex Specifications of Technology 
and Cost Functions (3)

This approach is deterministic: all deviations from frontier are inefficiencies
Several stochastic approaches to non-parametric frontier estimation exist: 
• Chance constrained programming: assume that an exogenous proportion of the 

variation in data is due to stochastic noise (e.g., Olesen & Petersen (1995)).
• Nonparametric least-squares regression: subject to shape constraints on frontier 

and sign constraints on residuals (e.g., Kuosmanen & Johnson (2010)). 
• State-contingent alternative to traditional non-parametric frontier estimation 

(Chambers, Hailu, & Quiggin (2011)). 
Comparative studies on the relative merits of these and other approaches are scant.
No consensus emerged as to which methodology performs best in general. 

Duhem-Quine hypothesis: 
• Empirical testing of any scientific hypothesis requires auxiliary assumptions.
• In case of falsification it is difficult to find the hypothesis responsible for it.

Our strategy:
Limit the amount of auxiliary assumptions to a strict minimum. 
Stick to the simplest of theoretical frameworks in which convexity can be tested.
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2. Technology and Cost Functions 
Results on impact convexity on cost function (1)

Briec et al (2004) prove:
• Costs evaluated on NC technologies are higher or equal to costs evaluated on C 
technologies: 

• In the case of (i) CRS and (ii) a single output: 

Source: Briec et al (2004) , p. 171.

( , ) ( , ).NC C
C y w C y w≥

( , ) ( , ).NC C
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2. Technology and Cost Functions 
Results on impact convexity on cost function (2)

This relation reflects the property that cost functions are non-decreasing in 
outputs and C (NC) in the outputs depending on whether the technology is C (NC). 

Source: Jacobsen (1970): Proposition 5.2 (Q9) on p. 765.

Source: Shephard (1974): Proposition 5.2 on p. 15.
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2. Technology and Cost Functions 
Results on impact convexity on cost function (3)

Advanced micro-economic textbooks ignore this issue when discussing duality: 
Example 1: Varian (1992: p. 84).

Duality of cost & input distance f. established under convexity of input sets. 
But, empirical methodologies impose convexity on technology. 
While this difference is known to matter for the cost function, textbooks 
ignore this issue. 
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2. Technology and Cost Functions 
Results on impact convexity on cost function (4)

Advanced micro-economic textbooks ignore this issue when discussing the 
properties of the cost function: Example 2: Jehle and Reny (2011: p. 138).

If this issue is not mentioned in these books, then it probably is no big deal? 
The answer is an empirical issue: we simply do not know whether it matters. 
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2. Technology and Cost Functions 
Logical Criticism of the convexity assumption (1)

Critique of convexity assumption can consider a variety of arguments:
Convexity justified because of time divisibility of technologies: 
This ignores setup times and costs (some of which may be sunk) that make 
switching between underlying activities costly. 
Examples:

•Setup times in industrial scheduling activities continue to exist. 
•Task juggling in services is widespread and leads to productivity losses. 
•Minor differences in communication speeds between market participants are 
central in discussions on the role of high frequency trading in financial markets.

• Convexity is not a primitive axiom, but implied by additivity and divisibility.
(i) Perfect divisibility of inputs and/or outputs is a debatable assumption. 
Most operations management problems in industry and distribution involve 
indivisibilities and input fixities resulting in integer, possibly non-linear 
optimization problems. 
In general, production processes have some lower limit below which a process 
cannot possibly be scaled down realistically. 
Thus: Divisibility is questionable (see Scarf (1994) or Winter (2008)). 
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2. Technology and Cost Functions 
Logical Criticism of the convexity assumption (2)

(ii) Additivity is essential to define free entry, but presupposes spatial 
separation and non-interaction which are both debatable (see Winter (2008)). 
Since additivity relates to the aggregation of results of activities occurring in 
geographically distinct places, transportation and coordination costs must be 
small to be safely ignored. 
When activities are close for transportation costs to be negligible, then the risk of 
production externalities looms when activities get “too close” and interact. 

(iii) Additivity and divisibility do not only imply convexity, but also CRS. 
The CRS assumption is at odds with indivisibilities and the lower bounds on the 
scaling of almost all production processes (see Scarf’s (1994: 114-115) critique).



18

2. Technology and Cost Functions 
Empirical Criticism of the convexity assumption (1)

Two empirical literatures provide some evidence on existence of nonconvexities.

1. Sometimes the NC production models are employed on their own:
•Alam and Sickles (2000) examine time series of technical efficiency in the USA 
airline industry for convergence.
•For oil field petroleum data, Kerstens & Managi (2012) report substantial 
differences in Luenberger productivity indicator between convex and non-convex 
technologies and only find both beta- and sigma-convergence for latter 
technology.

Burgeoning literature uses these non-convex cost models in comparative 
perspective:
•Cummins & Zi (1998) and Grifell-Tatjé & Kerstens (2008): see above. 
•Balaguer-Coll et al. (2007) analyse Spanish local government efficiency from a 
production as well as a cost viewpoint.

Summary Table on next slide with studies in economic literature known to us. 
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2. Technology and Cost Functions 
Empirical Criticism of the convexity assumption (2)

Table 1: NC and C Cost Estimates: Literature Review
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2. Technology and Cost Functions 
Empirical Criticism of the convexity assumption (2)

Conclusion: these differences are large enough to justify digging deeper into this 
matter.
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2. Technology and Cost Functions 
Empirical Criticism of the convexity assumption (3)

2. Some parametric studies using flexible functional forms test for the satisfaction 
of monotonicity and/or curvature conditions. 
If curvature or monotonicity conditions are violated, then standard 2nd-order 
conditions for optimizing behaviour fail to hold and duality relations break down.

Sauer (2006) revisits 8 parametric frontier studies in agriculture: 
•Finds monotonicity violations.
•Violations of the law of diminishing marginal productivity for 1 to 4 of the at 
most 8 inputs. 
•No single estimated production frontiers fulfils the curvature criterion of quasi-
concavity. 

Conclusion: 
One interpretation of these curvature failures is that these reveal the existence of 
nonconvexities.
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3. Empirical Methodology
Sections of cost functions

Reconstruction and visualization of production frontiers is discussed in some 
articles (e.g., Hackman et al. (1994) or Hackman (2008)).

Some articles exploit the fact that that non-parametric technologies are convex 
polyhedra to enumerate facets. A 2-dimensional projection is then defined 
relative to a particular point in the technology. 

Krivonozhko et al. (2004) present a family of parametric optimization methods to 
construct an intersection of the multidimensional frontier with a 2-dimensional 
plane determined by any pair of given directions. 

Here, for a given observation a section of a cost function along one particular 
output dimension is computed using parametric programming: grid of 1000 points 
within the empirical range of the sample for the output selected.
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3. Empirical Methodology
Sections of cost functions: Example in 2 inputs and 1 output

C Technology with Planar Section NC Technology with Planar Section

C and NC Cost Function in Single Output
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3. Empirical Methodology
Characterising global returns to scale

Kerstens and Vanden Eeckaut (1999) generalise a goodness-of-fit method to 
determine global returns to scale for all (including NC) technologies.

Definition 1: Using DFi(x,y) and conditional on the optimal projection point, 

technology is globally characterised by:

CRS ⇔ DFi(x,yC) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) };
IRS ⇔ DFi(x,y | NDRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }; or
DRS ⇔ DFi(x,y | NIRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }..

Notes:

- Simplifications of Definition 1 exist: Soleimani-damaneh, Jahanshahloo & 
Reshadi (2006), Soleimani-damaneh & Reshadi (2007), and Soleimani-damaneh &  
Mostafaee (2009).

- Podinovski (2004) shows that global and local returns to scale need not coincide 
for NC technologies. E.g., when moving from an IRS towards a CRS point average 
productivity increases monotonously on a C technology, but this need not hold for 
a NC technology.
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3. Empirical Methodology
Characterising economies of scale

Goodness-of-fit method based on the inclusion of different cost frontiers 
estimated relative to different return to scale assumptions can be used.

Definition 2: Using C(y,w.) and conditional on the optimal projection point, the 

cost function is globally characterised by:

CES ⇔ C (y,wC)       = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) };
IES ⇔ C(y,wNDRS) = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) }; or
DES ⇔ C(y,wNIRS) = max{ C(y,wC), C(y,wNIRS), C(y,wNDRS) }..

whereby CES, IES and DES stand for Constant, Increasing (Non-Decreasing), and 
Decreasing (Non-Increasing) Economies of Scale respectively.
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4. Description of the Samples
Two secondary data sets

Use 2 secondary data sets in empirical analysis (J. Applied Econometrics archive):

1. Chilean hydro-electric power generation plants
16 Chilean hydro-electric power generation plants observed on a monthly basis for 
several years (Atkinson & Dorfman (2009)). 
Focus on single year 1997: specify inter-temporal frontier (ignore technical change). 
Total: 192 observations. 
1 output: electricity generated. 
Prices and quantities of 3 inputs: (i) labour, (ii) capital, & (iii) water. 

2. Unbalanced panel of 3 years of French fruit producers 
Based on annual accounting data collected in a survey (Ivaldi et al. (1996)). 
Short panel (3 years) justifies intertemporal frontier (ignore technical change).
Total: 405 observations 
2 outputs: (i) production of apples, and (ii) aggregate of alternative products. 
Prices and quantities of 3 inputs: (i) capital (incl. land), (ii) labour, & (iii) materials.
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5. Empirical Results
Cost frontier estimates: Descriptive statistics

Table 2: NC and C Cost Frontier Values: Descriptive Statistics

Conclusions:
• NC cost frontier estimates are on average higher than their C counterparts.
• VRS cost frontier estimates are higher than the CRS ones. 
• For hydro-power plants: NC and C results are identical for CRS, since 1 output.
•Li-test statistics: all distributions C/NC are different.
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5. Empirical Results
Cost frontier estimates: Densities (1)

Figure 1: Kernel Density Estimates of Cost Frontiers for Chilean Hydro-power 
Plants
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5. Empirical Results
Cost frontier estimates: Densities (2)

Figure 2: Kernel Density Estimates of Cost Frontiers for French Fruit 
Producers
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5. Empirical Results
Sections of the Cost Function in the Output

Figure 3: VRS Cost Function in the Single Output for Hydro-power Plant 5
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5. Empirical Results
Sections of the Cost Function in the Output

Figure 4: CRS Cost Function in the Single Output for Hydro-power Plant 5
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5. Empirical Results
Sections of the Cost Function in the Output

Figure 5: VRS Cost Function in Output 1 for Fruit Producer 19
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5. Empirical Results
Sections of the Cost Function in the Output

Figure 6: CRS Cost Function in Output 1 for Fruit Producer 19
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5. Empirical Results
Sections and number of change points

Table 3: Nonconvex and Convex Cost Function Sections: Descriptive Statistics 
on Change Points

Conclusions:
• under VRS the NC sections show on average up to 4 times more change points 
compared to C 
•CRS sections actually show even relatively more change points.
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5. Empirical Results
Returns to scale & Economies of scale results

Table 4: Returns to Scale and Economies of Scale Results

Conclusions:
• Majority of observations operate under IRS. 
Qualification: NC cost approach for hydro-power plants indicates about an equal 
amount of IRS and DRS. 
• NC cost approach reveals a larger share of observations subject to DRS 
compared to the production-based analysis. 
• More CRS under NC. 
Exception: cost approach for hydro-power plants.

Chilean Hydro-power Plants (%) 

Production IRS CRS DRS 

Non-convex 70.31 16.67 13.02 

Convex 76.04 2.60 21.35 

Cost IRS CRS DRS 

Non-convex 51.56 0.52 47.92 

Convex 68.23 9.38 22.40 

French Fruit Producers (%) 

Production IRS CRS DRS 

Non-convex 74.07 12.84 13.09 

Convex 90.37 1.73 7.90 

Cost IRS CRS DRS 

Non-convex 73.83 1.98 24.20 

Convex 93.33 0.25 6.42 
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5. Empirical Results
Returns & Economies of scale: Conflicting information

Per data set and per production and cost method, Table 5 reports the % of  
observations for which the returns to scale and economies of scale classification 
coincides/diverges. 

Focus on part of results in Table 5 (Table suppressed): 
Switch from IRS (economies to scale) to DRS (diseconomies to scale), or the 
reverse (extreme mis-classification).
•Hydro-power plants: 
Production: 7.81%
Cost: 21.88% 
•Fruit producers: 
Production: 6.91% 
Cost: 17.78%

Conclusion:
- about 1 out of 12 observations gets misclassified for returns to scale 
- about 1 out of 5 observations gets misclassified for economies of scale 



37

6. Conclusions

• What has been achieved?

• First to empirically illustrate the differences in distributions between convex 
and non-convex cost frontier estimates. 

• Sections of cost in function of a single output illustrated the differences for 
individual observations. Sections of C frontiers have much less change points 
supporting the frontier compared to the NC frontier.

• Characterization of both economies of scale and returns to scale for 
individual observations turns out to be seriously conditioned by convexity.

• Differences in the relative importance of the sources of poor performance.
Substantially less inefficiency under non-convexity. 
More observations are efficient under non-convexity.

• General perspectives:

• Be cautious with the use of convex technologies and cost functions. 

• Quantify incidence of convexity as 1st step to statistical testing.

Dilemma for the neo-classical economist:

• If you do not like large inefficiencies, then accept non-convexity. 

• If you do not like non-convexity, then accept large inefficiencies. 
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The End

Thanks for your attention. Any questions???

k.kerstens@ieseg.fr
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Extra material
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Own Empirical Results on C vs. NC

Type Analysis: Key Findings: Publication:

Cost function Differences C vs. NC J. Econ. 04

Returns to Scale Differences C vs. NC EJOR 17
Ray Average Productivity RAP does not vary monotonously under NC

Productivity/Total Factor Productivity:
- Luenberger indicator Differences C vs. NC IJPE 12
- Malmquist vs. Hicks-Moorsteen Differences C vs. NC EJOR 14
- Luenberger vs. L-Hicks-Moorsteen Differences C vs. NC IJPE 18

Plant capacity:
- Output-oriented vs. Input-oriented Differences C vs. NC Pac. Ec. Rev. 17
- Output-oriented vs. Attainable Differences C vs. NC Op. Res. forthc.
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1. Introduction
Arguments of convexity

We develop 3 main arguments:

• Convexity is difficult to justify as a general property of production 
possibility sets.

• Harmless convexification of production sets when developing dual value 
(e.g., cost) functions is often misinterpreted to imply that only convex 

production possibility sets are meaningful. Convexity is harmless only if 
convexity of the input set is maintained.

Two problems with partial convexity: 
(i) doubts raised about general convexity also apply to partial convexity;
(ii) when imposing general convexity (as in most empirical specifications), 
then general convex and non-convex cost functions only coincide under 
specific conditions.

• Scattered in the literature, there is some evidence that managers 
question the validity of convexity in efficiency measurement. 
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1. Introduction
One motivation in detail: Convexity questionable as a general property

Convexity is hard to justify as a general property of production possibility sets:

1. Farrell (1959: 380) points to indivisibilities and economies of scale as

sources of non-convexities and adds: “the onus of proof rests on those who

deny their existence”.

2. Allais (1977: 188) confirms Farrell’s arguments and adds some of his own:

he favours local convexity, but rejects global convexity:

“this omission [of discussing convexity] is to be found in all the contemporary

literature. I do not hesitate to say that it is deliberate, for even a limited

discussion of the postulate of general convexity would rapidly lead to the

inevitable conclusion that this postulate cannot be accepted”.

3. Koopmans (1957) called the widespread use of convexity in production 

theory a matter of analytical convenience. 
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1. Introduction
One motivation in detail: Managers sometimes question convexity

Managers question validity of convexity in efficiency measurement:

1. Convex nonparametric frontier applied to measuring bank branch efficiency:

“The comparison of a branch which was declared relatively efficient, to a

hypothetical composite branch, did not allow for convincing practical

arguments as to where the inefficiencies lay.” (Parkan (1987: 242))

2. Convex nonparametric frontier applied to a large public organisation:

Epstein and Henderson (1989: 105) report that managers simply question

the feasibility of hypothetical projection points:

“The algorithm for construction of the frontier was also discussed. The 

frontier segment connecting A and B was considered unattainable. It was 

suggested that either 

• these two DMUs should be viewed as abnormal and dropped from the model, 
• certain key variables have been excluded, or 
• the assumption of linearity was inappropriate in this organization. It appears 

that each of these factors was present to some degree.”



44

• Assumptions on technology needed in this contribution:

A. No free lunch (if (x,y) ∈ T ∧ x = 0 ⇒ y = 0);

Inaction is feasible ((0,0) ∈ T).

B. T is closed.

C. Strong (free) disposal of inputs and outputs:

(x,y) ∈ T ∧ (x′,-y′) ≥ (x,-y) ⇒ (x′,y′) ∈ T.

D. T exhibits:

i. Constant Returns to Scale (CRS): when (x,y)∈T, then δ(x,y)∈T, ∀δ > 0;

ii. Non-Increasing Returns to Scale (NIRS): when (x,y)∈T, then δ(x,y)∈T,

∀δ ∈[0,1];

iii. Non-Decreasing Returns to Scale (NDRS): when (x,y)∈T, then

δ(x,y)∈T, ∀δ ≥ 1;

iv. Variable Returns to Scale (VRS): when (i), (ii) and (iii) do not hold.

E. T is convex. 

2. Non-Convex Technologies: Axioms and Formulations 
Initial definitions (bis)

Convex technologies satisfy A,B,C,D (any of i to iv) and E.

Non-convex Free Disposal Hull technology satisfies A,B,C and D (iv).
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3. Geometric Reconstruction: Case of 2 Inputs and 1 Output (1)
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3. Geometric Reconstruction: Case of 2 Inputs and 1 Output (2)
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3. Geometric Reconstruction: Case of 2 Inputs and 1 Output (3)
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3. Geometric Reconstruction: Case of 2 Outputs and 1 Input (1)



49

3. Geometric Reconstruction: Case of 2 Outputs and 1 Input (2)
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3. Geometric Reconstruction: Case of 2 Outputs and 1 Input (3)


